

Cupric Superoxo-Mediated Intermolecular C–H Activation Chemistry

Ryan L. Peterson,^{†,†} Richard A. Himes,[†] Hiroaki Kotani,[§] Tomoyoshi Suenobu,[§] Li Tian,^{||} Maxime A. Siegler,[†] Edward I. Solomon,^{*,||} Shunichi Fukuzumi,^{*,†,§} and Kenneth D. Karlin^{*,†,‡}

⁺Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

^{*}Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

^{\$}Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

^{II} Department of Chemistry, Stanford University, Stanford, California 94305, United States

S Supporting Information

ABSTRACT: The new cupric superoxo complex $[LCu^{II}-(O_2^{\bullet-})]^+$, which possesses particularly strong O–O and Cu–O bonding, is capable of intermolecular C–H activation of the NADH analogue 1-benzyl-1,4-dihydronicotinamide (**BNAH**). Kinetic studies indicated a first-order dependence on both the Cu complex and **BNAH** with a deuterium kinetic isotope effect (KIE) of 12.1, similar to that observed for certain copper monooxygenases.

opper(I) reactions with molecular oxygen play fundamental roles in many chemical and biological processes.^{1,2} Copperdependent proteins perform a diverse array of oxidative and oxygenative reactions. This has inspired considerable efforts in the design of novel ligands and copper-coordinated complexes as well as the study of ligand-copper(I) dioxygen adducts to elucidate their structures, electronic characteristics, and substrate reactivities.²⁻⁴ In comparison with binuclear copper dioxygenderived species, mononuclear analogues have been synthetically challenging and hence are less well understood.^{3,5} However, they are fundamentally important and directly relevant to copper proteins, including dopamine- β -monooxygenase (D β M) and peptidylglycine-α-hydroxylating monooxygenase (PHM).⁶ These enzymes possess a so-called noncoupled binuclear active site, which comprises two Cu centers separated by \sim 11 Å. Dioxygen binding and substrate hydroxylation occur at one of the copper sites (designated Cu_M). In an important PHM X-ray structure, a dioxygen-derived species presumed to be an end-on bound cupric superoxide species (i.e., $Cu^{II} - O - O^{\bullet-}$) resides adjacent to an inhibitory substrate analogue.^{6c} Along with biochemical,^{6a,6b,8} chemical, and computational studies,^{5,9} the cupric superoxo species is thought by many to be the reactive intermediate responsible for initiating oxidation via hydrogen-atom abstraction. However, other species have been considered as important intermediates in enzymatic turnover, either prior to or following substrate attack, including cupric hydroperoxo $(Cu^{II} - OOH)^1$ and high-valent cupryl $(Cu^{II} - O^{\bullet} \leftrightarrow Cu^{III} = O)$ entities.^{4b,9c,11}

In our own research program, we seek to elucidate the chemical nature of all of these mononuclear species. In this report, we describe the generation and characterization of a new $Cu^{II}(O_2^{\bullet-})$ species and an example of substrate C-H activation (i.e., oxidative C-H bond cleavage). To this point, cupric

Figure 1. (left) Representation of the cationic portion of the X-ray structure of $[LCu^{1]}^+(B(C_6F_5)_4^-)$, revealing the $N_4O_{(amide)}$ coordination (Cu–O = 2.190 Å). (right) Calculated structure (see the Supporting Information) of $[LCu^{II}(O_2^{\bullet-})]^+$ (1), indicating the H-bonding interaction between the ligand and the superoxo β -oxygen atom. See the text for further discussion.

superoxo complexes have been shown to exhibit phenol O–H bond cleavage reactions,^{10a,12} and in one case, Itoh and co-workers¹³ provided evidence for a Cu^{II}(O₂^{•-})-mediated intra-molecular benzylic C–H oxygenation. Here, for the first time, an intermolecular C–H substrate oxidation reaction has been achieved, with kinetic data clearly implicating the involvement of the Cu^{II}(O₂^{•-}) complex in rate-limiting substrate C–H bond cleavage.

The Cu^I complex [LCu^I]⁺ [as the B(C₆F₅)₄⁻ salt¹⁴] of a ligand L previously employed by Masuda and co-workers, ^{14a} namely, [bis(pyrid-2-ylmethyl){[6-(pivalamido)pyrid-2-yl]methyl}amine], was exposed to O₂ (by bubbling via a syringe needle) in 2-methyltetrahydrofuran (MeTHF) solvent at -125 °C to form the adduct [LCu^{II}(O₂^{•-})]⁺ (1) (Figure 1), which exhibited UV-vis absorptions [$\lambda_{max} = 410 \text{ nm} (3700 \text{ M}^{-1} \text{ cm}^{-1})$, 585 nm (900 M⁻¹ cm⁻¹), 741 nm (1150 M⁻¹ cm⁻¹)]¹⁵ characteristic of a mononuclear end-bound Cu^{II} superoxo complex. This temperature well below -80 °C was necessary in order to observe this 1:1 Cu/O₂ adduct. Under these conditions, this green, EPR-silent species was quite stable, decaying only very slowly (half-life > 4 h) with conversion to [{(LCu^{II})}₂(O₂²⁻)]²⁺ (2), a μ -1,2-peroxodicopper(II) complex [$\lambda_{max} = 541 \text{ nm} (9900 \text{ M}^{-1} \text{ cm}^{-1})$] that is observed when [LCu^I]⁺ is oxygenated at -80 °C.^{14b}

A resonance Raman (rR) spectrum (77 K, excitation at 413 nm) of 1 in frozen MeTHF solution is shown in Figure 2. The O–O stretch was observed at 1130 cm⁻¹ as a single peak

Received: November 21, 2010 Published: January 25, 2011

Figure 2. Solvent-subtracted rR spectra of MeTHF solutions of 1 (λ_{ex} = 413 nm): (A) ν (Cu-O) region; (B) ν (O-O) region. Red, ¹⁶O₂; blue, ¹⁸O₂.

when the complex was formed with ${}^{16}O_2$ (Figure 2B, red), but upon ${}^{18}O_2$ isotopic substitution, two features were observed (Figure 2B, blue). This behavior is consistent with a Fermi resonance between the ${}^{18}O_2$ vibration and a nonenhanced mode at similar energy. From the energy and intensity of the two observed mixed-modal features, the preinteraction energy of the resonantly enhanced ${}^{18}O^{-18}O$ stretch was calculated to be 1067 cm⁻¹. Thus, the O-O stretch was shifted to lower energy by 63 cm⁻¹ upon ${}^{18}O_2$ substitution, consistent with a bound superoxo species. 16 For the lower-energy region, both the ${}^{16}O_2$ and ${}^{18}O_2$ data showed two peaks with an intensity distribution that changed with isotope. Therefore, these are both mixed as a result of Fermi resonance. Analysis 15 of the lower-energy region (Figure 2A) showed a Cu $-{}^{16}O$ stretch at 482 cm⁻¹ that was shifted to 462 cm⁻¹ with ${}^{18}O.{}^{17}$

Thus, the rR spectroscopic data confirmed the formulation of $[LCu^{II}(O_2^{\bullet-})]^+$ as an end-on superoxo-containing complex with O-O and Cu-O stretches of 1130 and 482 cm⁻¹, respectively.¹⁵ Notably, these values are higher than those found for all cupric superoxo complexes previously described: ν (O–O) for the one structurally defined side-on bound cupric superoxo complex is 1043 cm⁻¹, while those for the end-on bound species range up to 1122 cm⁻¹; ν (Cu–O) varies from 422 to 474 cm⁻¹ ¹⁵. Using DFT calculations, we evaluated the Cu-O and O-O vibrational frequencies of 1, a related structure having the pivalamido group at the para position instead of the ortho position, and a structure with Cu-N bonds constrained but no pivalamido group.¹⁵ The comparison between para and ortho substitution eliminated an inductive effect from the pivalamido group as the origin of the higher frequencies. Consistent with the $\nu(O-O)$ of 1130 cm⁻¹, 1 was calculated to be an end-on bound Cu(II) superoxo species with a triplet ground state (the singlet/triplet splitting was calculated to be $1581 \text{ cm}^{-1,15}$ after correction for spin contamination). For L and its close analogues, Masuda and co-workers^{14a} found that the pivalamidopyridyl substituent forms intramolecular H-bonds to the α oxygen atoms of a peroxide and/or hydroperoxide moiety ligated to the copper(II) ion^{14a,18} or to the α nitrogen atom of an azide coordinated to copper(II).^{14a} However, our calculations¹⁵ suggested that the superoxo moiety in $[LCu^{II}(O_2^{\bullet-})]^+$ (1) forms an intramolecular H-bond with *either* the α or β oxygen. This would contribute to the relative stability of 1 and can account for the higher O-O and Cu-O frequencies. rR data on the analogues $[Cu^{II}(TMPA)(O_2^{\bullet -})]^+$ [TMPA = tris(2pyridylmethyl)amine] and $[Cu^{II}(NMe_2-TMPA)(O_2^{\bullet-})]^+$ show

a ν (O-O) of 1120 cm⁻¹ and a ν (Cu-O) of 472 cm⁻¹;¹² thus, $\nu(O-O)$ and $\nu(Cu-O)$ are both $\sim 10 \text{ cm}^{-1}$ higher in 1. Optimized geometries of $[Cu^{II}TMPA(O_2^{\bullet-})]^+$ and $[Cu^{II} (NMe_2-TMPA)(O_2^{\bullet-})]^+$ were also obtained through DFT calculations and compared to that of 1. These calculations gave an increase in both $\nu(Cu-O)$ and $\nu(O-O)$ when H-bonding, particularly to the β oxygen of the superoxo ligand, was included in 1.^{15,19} The calculated structure showed a decrease of 0.005 Å in the Cu-O bond length, indicating that a slightly stronger Cu-O bond is associated with the higher ν (Cu–O). From the DFT calculation of the structure with Cu-N bond lengths constrained at the values of the optimized structure of 1 but with no pivalamido group, this appears to reflect a distortion of the Nequatorial ligand system that decreases its donor interaction with the Cu. The donor interaction of the superoxo with the Cu thus increases, leading to a stronger Cu-O bond. Alternatively, the calculations showed that the O-O bond length actually increases by 0.005 Å in 1, indicating that the increase in v(O-O)relative to $[Cu^{II}TMPA(O_2^{\bullet-})]^+$ does not reflect a stronger O-O bond but derives from structural coupling of vibrations within the ligand system due to the H-bond. This H-bonding stabilizes the superoxo species (relative to the binuclear peroxo species) and allows its reactivity to be studied.

 $[LCu^{II}(O_2^{\bullet-})]^+$ (1) is unreactive toward a number of commonly employed C-H substrates, such as dihydroanthracene, xanthene, and 10-methyl-9,10-dihydroacridine, which are substrates possessing C-H bonds that are significantly weaker than those found for the D β M and PHM substrates (dopamine, 85 kcal/mol; hippuric acid, 87 kcal/mol).^{6b} However, the addition of an excess of 1-benzyl-1,4-dihydronicotinamide (BNAH), an NADH analogue that is both a strong H atom (H[•]) and hydride (H⁻) donor,¹⁹ to solutions of [LCu^{II}($O_2^{\bullet-}$)]⁺ leads to the decay of the latter, as observed by UV-vis spectroscopy (Figure 3a). Kinetic interrogation of this reaction (-125 °C)showed pseudo-first-order decay behavior with respect to 1 (for 10-40 equiv of BNAH). The decay was also first-order in [BNAH]. Thus, the cupric superoxo complex is responsible for promoting the substrate oxidation (see below). A second-order rate constant of 0.19 M^{-1} s⁻¹ was obtained (Figure 3b); when the substrate was deuterated in the 4 and 4' positions, i.e., when 1-benzyl-1,4-dihydro $[4,4'-{}^{2}H_{2}]$ nicotinamide (BNAD) was used, a significant slowing of the reaction occurred ($k = 0.016 \text{ M}^{-1} \text{ s}^{-1}$; Figure 3b). This gives a kinetic isotope effect (KIE) of 12.1. This KIE value is comparable to the KIE of 10 reported for C-H bond cleavage of BNAH by a trans-dioxomanganese(V) porphyrin.²⁰ Product analysis of the $[LCu^{II}(O_2^{\bullet-})]^+/BNAH$ reaction (following quenching with HCl at -130 °C)¹⁵ confirmed that BNAH underwent oxidation by 1. The substrate's 4' C-H bond was oxidatively cleaved to form 1-benzylnicotinamidium ion (BNA^+) in 42% yield (¹H NMR) based on the initial copper concentration (Scheme 1). Additionally, upon acidification, liberated hydrogen peroxide was also detected in \sim 30% yield, approximately corresponding to the amount of the peroxodicopper(II) complex $[{(LCu^{II})}_2(O_2^{2-})]^{2+}$ (2), which was also a reaction product as identified by its characteristic UV-vis absorption bands (see above).

Cupric superoxo-promoted cleavage of the C-H bond likely follows one of two possible pathways (Scheme 1). One is initial H-atom transfer (HAT), in which the C-H bond is cleaved homolytically (with the thus-formed **BNA** radical rapidly losing a second electron); the other involves hydride transfer resulting from heterolytic cleavage. To provide further mechanistic insight

Figure 3. (a) Spectral changes of 0.4 mM $[LCu^{II}(O_2^{\bullet-})]^+$ in the presence of 8 mM **BNAH** at -125 °C in MeTHF. The first spectrum recorded (green) is that immediately following bubbling of O_2 through a solution containing $[LCu^I]^+$ and **BNAH**. Inset: pseudo-first-order kinetics fit of the 741 nm data. (b) Plots of k_{obs} as a function of **BNAH**, **BNAD**, or **BZIMH** concentration, used to determine the second-order rate constants.

into the mode of C–H activation by **1**, a second substrate, 1,3dimethyl-2,3-dihydrobenzimidazole (**BzImH**),²¹ was studied for reactivity. Like **BNAH**, **BzImH** possesses a weak C–H bond but has markedly different bond strengths than BNAH (homolytic, bond dissociation energy = 73.4 kcal/mol vs 70.7 kcal/mol for **BNAH**; heterolytic, hydride affinity = 49.5 kcal/mol vs 64.2 kcal/ mol for **BNAH**).²¹ Kinetic studies revealed that the oxidation of **BzImH** occurs ~2.4 times slower than that of BNAH, with a second-order rate constant of 0.078 M⁻¹ s⁻¹ (Figure 3b). The lower rate of C–H oxidation of **BzImH** (stronger H⁻ donor) than of **BNAH** (stronger H[•] donor) thus suggests that at least for these substrates, the preferred mode of C–H activation by $[LCu^{II}(O₂^{•-})]^+$ is via rate-limiting homolytic C–H bond cleavage, i.e, HAT.

On the basis of extensive studies of the enzymes PHM and $D\beta M$, the most accepted mechanistic proposal is that these enzymes initially proceed by (nonclassical)^{6b,22} HAT chemistry promoted by a cupric superoxo complex generated at the Cu_M site.^{8a,9a} Interestingly, enzyme kinetic studies carried out on $D\beta M$ and PHM revealed KIEs of 10-14.^{6,23} (depending on the conditions), which are very similar to that found here for our system. The studies reported here with a "model" cupric superoxide complex suggest that this mechanism is followed, at least for the relatively weak C–H substrates investigated. In one case, theoretical calculations inspired by results on a model system led to the suggestion that an initial hydride abstraction may occur for PHM/D β M.²⁴ The present findings suggest that this is not likely to be a favorable pathway.

Following C–H activation, the overall mechanism of substrate hydroxylation by the enzymes $D\beta M$ and PHM is poorly understood, with nearly as many proposals for the subsequent

steps as there are researchers in the field.¹⁵ The steps to products following the transition state are also difficult to surmise in our chemical systems.²⁵ Despite these uncertainties, the importance of the present studies lies in the observation of intermolecular C-H activation by a cupric superoxo complex.

To summarize, a new ligand-supported cupric superoxo complex with reactivity behavior of relevance to the D β M and PHM enzymes has been described. Significant advances include the following: (a) $[LCu^{II}(O_2^{\bullet-})]^+$ (1) is the first cupric superoxo complex that incorporates a hydrogen-bonding ligand feature. (b) This results in a compound with stronger Cu-O and O-Obonds than in previously known examples. (c) Not necessarily related to the latter properties, the reactions of 1 with BNAH and BzImH provide the first examples of intermolecular C-H bond activation by a cupric superoxo complex. Notably, it is not unexpected that relatively weak C-H bonds are cleaved for an intermolecular situation; one does not have the advantage of a proximate substrate, as found for the single known example of intramolecular $Cu^{II}(O_2^{\bullet-})$ -mediated C-H oxidation.¹³ (d) Finally, the relative rates for C-H oxidation of these two substrates support rate-limiting homolytic C-H bond activation. Further corroborating studies with other C-H mechanistic probes will be investigated. The clean kinetic behavior, striking deuterium KIE, and determination of rate-limiting HAT demonstrate that the reaction of $[LCu^{II}(O_2^{\bullet-})]^+$ (1) with C-H substrates may possess biological significance in direct comparison to the reaction mechanism of the D β M and PHM enzymes.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures, spectra, DFT calculations, explanations and supporting diagrams, and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

edward.solomon@stanford.edu; fukuzumi@chem.eng.osaka-u.ac.jp; karlin@jhu.edu

ACKNOWLEDGMENT

This research was supported by the National Institutes of Health (GM28962 to K.D.K. and DK31450 to E.I.S.), WCU Program R31-2008-000-10010-0 (to K.D.K. and S.F.), by a

REFERENCES

(1) (a) Holm, R. H.; Kennepohl, P.; Solomon, E. I. *Chem. Rev.* **1996**, 96, 2239–2314. (b) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E. *Angew. Chem., Int. Ed.* **2001**, 40, 4570–4590.

(2) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. **2004**, *104*, 1013–1045. (b) Lewis, E. A.; Tolman, W. B. Chem. Rev. **2004**, *104*, 1047–1076.

(3) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115-122.

(4) (a) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9, 669–683. (b) Himes, R. A.; Karlin, K. D. Curr. Opin. Chem. Biol. 2009, 13, 119–131.

(5) Cramer, C. J.; Tolman, W. B. Acc. Chem. Res. 2007, 40, 601-608.

(6) (a) Klinman, J. P. Chem. Rev. **1996**, 96, 2541–2561. (b) Klinman, J. P. J. Biol. Chem. **2006**, 281, 3013–3016. (c) Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science **2004**, 304, 864–867.

(7) Chen, P.; Solomon, E. I. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13105–13110.

(8) (a) Evans, J. P.; Ahn, K.; Klinman, J. P. J. Biol. Chem. 2003, 278, 49691–49698.
(b) Bauman, A. T.; Yukl, E. T.; Alkevich, K.; McCormack, A. L.; Blackburn, N. J. J. Biol. Chem. 2006, 281, 4190–4198.

(9) (a) Chen, P.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 4991–
5000. (b) Chen, P.; Bell, J.; Eipper, B. A.; Solomon, E. I. Biochemistry 2004, 43, 5735–5747. (c) Comba, P.; Knoppe, S.; Martin, B.; Rajaraman, G.; Rolli, C.; Shapiro, B.; Stork, T. Chem. Eur. J. 2008, 14, 344–357.

(10) (a) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; Würtele, C.;
Holthausen, M. C.; Narducci Sarjeant, A. A.; Sundermeyer, J.; Schindler,
S.; Karlin, K. D. Angew. Chem., Int. Ed. 2008, 47, 82–85. (b) Maiti, D.;
Narducci Sarjeant, A. A.; Karlin, K. D. Inorg. Chem. 2008, 47, 8736–8747.

(11) (a) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152–163. (b) Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota, Y. Inorg. Chem. 2006, 45, 3034–3041. (c) Crespo, A.; Martí, M. A.; Roitberg, A. E.; Amzel, L. M.; Estrin, D. A. J. Am. Chem. Soc. 2006, 128, 12817–12828. (d) Huber, S. M.; Ertem, M. Z.; Aquilante, F.; Gagliardi, L.; Tolman, W. B.; Cramer, C. J. Chem.—Eur. J. 2009, 15, 4886–4895.

(12) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon,
 E. I.; Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 264–265.

(13) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.; Takui, T.; Itoh, S. J. Am. Chem. Soc. 2009, 131, 2788–2789.

(14) (a) Yamaguchi, S.; Wada, A.; Funahashi, Y.; Nagatomo, S.; Kitagawa, T.; Jitsukawa, K.; Masuda, H. *Eur. J. Inorg. Chem.* **2003**, 4378–4386.(b) $[\{(LCu^{II})\}_2(O_2^{-2-})]^{2+}$ (2) possesses distinctive UV-vis absorptions and a ν (O–O) of 837 cm⁻¹.

(15) See the Supporting Information.

(16) The complex formed with ${}^{18}O_2$ had a small ${}^{16}O_2$ contamination estimated to be 18% from the weak O–O feature at 1130 cm⁻¹ observed in the ${}^{18}O$ sample spectrum. The signal of the ${}^{16}O$ sample was scaled and subtracted from the ${}^{18}O$ spectrum in the analysis of the Cu– ${}^{18}O$ vibrational region.

(17) A resonance-enhanced peak at 485 cm⁻¹ was observed for the complex formed with ¹⁶O₂, together with a less intense peak at 452 cm⁻¹. For the complex formed with ¹⁸O₂, two peaks were observed at 468 and 448 cm⁻¹, with their relative intensities reversed in comparison with the spectrum of the ¹⁶O sample. This pattern also indicates a Fermi resonance with a nonenhanced mode at similar energy, in this case for both the Cu⁻¹⁶O and Cu⁻¹⁸O spectra. From the analysis (see the Supporting Information), the preinteraction Cu^{-O} stretching frequency for the ¹⁶O complex is at 482 cm⁻¹ and that for the ¹⁸O complex is at 462 cm⁻¹.

(18) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai, M.; Kitagawa, T.; Einaga, H. *Angew. Chem., Int. Ed.* **1998**, *37*, 798–799.

(19) (a) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. **1987**, 109, 305–316. (b) Yuasa, J.; Fukuzumi, S. J. Am. Chem. Soc. **2006**, 128, 14281–14293. (20) Lee, J. Y.; Lee, Y.-M.; Kotani, H.; Nam, W.; Fukuzumi, S. *Chem. Commun.* **2009**, 704–706.

(21) Zhu, X.-Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P. J. Am. Chem. Soc. 2008, 130, 2501–2516.

(22) Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. *Biochemistry* 2003, 42, 1813–1819.

(23) Bollinger, J. M., Jr.; Krebs, C. Curr. Opin. Chem. Biol. 2007, 11, 151–158.

(24) de la Lande, A.; Parisel, O.; Gérard, H.; Moliner, V.; Reinaud, O. *Chem.*—*Eur. J.* **2008**, *14*, 6465–6473.

(25) For BNAH, no organic products besides BNA⁺ were detected in the reaction mixture. The sole inorganic product identified was the *trans*-peroxo complex 2, though it accounted for only ~50% of the total copper content in the reaction. Several pathways that lead to 2 following sequential HAT/electron transfer to 1 may be envisioned, giving a putative Cu(I)-OOH moiety that could "trap" an equivalent of 1 to give 2 and HO₂⁻. This would lead to consumption of 2 equiv of 1 per equivalent of substrate and explain the close-to-50% (as opposed to quantitative) yield of BNA⁺. The *trans*-peroxo species 2 was not reactive toward BNAH at -125 °C and decomposed only very slowly in the presence of large excesses of BzImH. Further incubation of the final reaction mixture did not lead to higher detected yields of BNA⁺, i.e., other copper species present following the conclusion of the reaction did not react with the substrate at the temperature examined.